Confinement-induced entropic recoil of single DNA molecules in a nanofluidic structure.

نویسندگان

  • S W P Turner
  • M Cabodi
  • H G Craighead
چکیده

The behavior of DNA molecules is observed in a nanofluidic device near the interface of two regions that produce different configuration entropies. An electric field is applied to drive the molecules partway across the interface. Upon removal of the field, the molecules recoil to the higher-entropy region with a profile characteristic of a force localized to the interface and independent of length. This is consistent with a confinement-mediated entropic force, distinct from the well-known entropic elasticity common to all polymers. An estimate of the hydrodynamic drag is used to produce a lower bound for the force. The phenomenon can be exploited to separate long-strand polyelectrolytes according to length.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Entropic recoil separation of long DNA molecules.

A novel technique that can rapidly separate long-strand polymers according to length is presented. The separation mechanism is mediated by a confinement-induced entropic force at the abrupt interface between regions of vastly different configuration entropy. To demonstrate this technique, DNA molecules were partially inserted into a dense array of nanopillars (an entropically unfavorable region...

متن کامل

Conformational analysis of single DNA molecules undergoing entropically induced motion in nanochannels.

We have used the interface between a nanochannel and a microchannel as a tool for applying controlled forces on a DNA molecule. A molecule, with a radius of gyration larger than the nanochannel width, that straddles such an interface is subject to an essentially constant entropic force, which can be balanced against other forces such as the electrophoretic force from an applied electric field. ...

متن کامل

Fabrication of Elastomeric Nanofluidic Devices for Manipulation of Long DNA Molecules

We propose a method for the separation of long DNA molecules, based on elastomeric nanochannels with tunable cross section. These nanoconfinement structures can be used to stretch DNA molecules and lower their conformational entropy. The sieving mechanism of entropic recoil, proposed by Cabodi et al. [1], will be implemented using an array of elastomeric nanocheannels. Structures of various dim...

متن کامل

Pushing and Stretching DNA

DNA molecules can be used as a model system for studying polymer physics. By manipulating and watching individual DNA molecules we can test theories that describe the conformation and dynamics of polymers that the community has been investigating for decades (like the so-called coil-stretch transition). These properties are significantly changed depending on the degree of confinement of the pol...

متن کامل

Development of a platform for single cell genomics using convex lens-induced confinement.

We demonstrate a lab-on-a-chip that combines micro/nano-fabricated features with a Convex Lens-Induced Confinement (CLIC) device for the in situ analysis of single cells. A complete cycle of single cell analysis was achieved that includes: cell trapping, cell isolation, lysis, protein digestion, genomic DNA extraction and on-chip genomic DNA linearization. The ability to dynamically alter the f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 88 12  شماره 

صفحات  -

تاریخ انتشار 2002